Prodotti, sistemi e soluzioni evolute. Innovativi da sempre

www.tiemme.com

FAQ 629

info@ctenergia.it

newsletter@tiemme.com

DOMANDA:

Mi potrebbe per cortesia mandare le formule che usa nel calcolo del riscaldamento della piscina esterna faq 608?

Infatti dovrei calcolare quanta energia mi serve per scaldare una piscina da 6 mt x 10 mt alta 1,8 e stimare la spesa di metano per mantenerla a 28 °C nella stagione estiva (giugno-settembre) In particolare vorrei sapere come si fa a calcola l'energia dispersa per evaporazione. Metteremo una caldaia da 30 kW pannelli solari circa 16 mg

RISPOSTA:

Nell'utilizzo della scheda Faq.608 rileviamo le perdite dell'energia termica attraverso lo specchio d'acqua Wh= 10684.

Sommata questa potenzialità alle altre perdite abbiamo una richiesta termica media ponderata di Wh 18297 per il mantenimento della temperatura piscina a 26-27°C.

In relazione alla tabella necessita una superficie da pannelli solari di circa 38,5 m².

SCHEDA DI CALCOLO PANNELLI SOLARI					
riscaldamento piscina esterna					
	L,	L2	Н	m ³	m²
Dimensione piscina	6	10	1,8	108	60
Perdite energia termica attraverso lo specchio d'acqua		Wh	10684		
Perdite energia termica attraverso le pareti laterali		Wh	653		
Perdite energia termica attraverso il fondo piscina		Wh	6960		
reintegro energia termica alla piscina		Wh	18297		
Superficie pannelli solari richiesta=		m ²	38,552		
Pennelli tipo MIROTHERM superficie		m² cad	2,02		
Pannelli		n°	19		

La disponibilità in proposta è di 16 m², ne segue che la differenza deve essere apportata dalla caldaia per una potenzialità oraria per il mantenimento alla temperatura di regime di 26-27°C per il periodo giornaliero equivalente a :((38,552_{m2} -16_{m2}) x 850_{W/m2}/1000) x 1,16 = 22,23 kWh (utilizzo della caldaia nel periodo giornaliero)

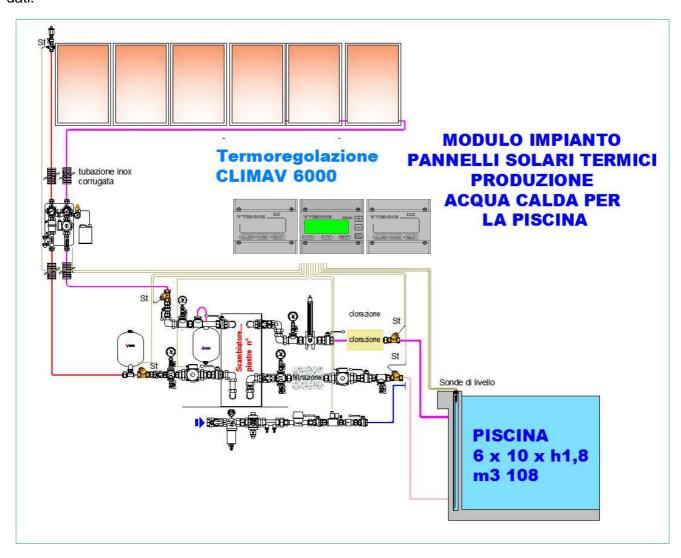
Considerando una riduzione della temperatura nel periodo notturno di 2°C, necessita un reintegro della potenzialità termica di

 $(2_{\text{°C}} \times 108_{\text{m3}} \times 1000_{\text{L/m3}} \times 1,16 / (1000 \times 16_{\text{ore}} \times 0,8)) = 19,60 \text{ kWh}$ (utilizzo caldaia periodo notturno)

Il consumo energetico annuo viene così valutato: periodo di attività 15 giugno-15 settembre gg 90

consumo giornaliero (kWh 22,23 x 8ore/g x 90_{gg} x 0,86 x 1000 x $0,9_{€/m3}$ / 8500) = **€/anno 1.457** notturno (kWh 19,60 x 16ore/g x 90_{gg} x 0,86 x 1000 x $0,9_{€/m3}$ / 8500) = **€/anno 2.570**

E' consuetudine prevedere una superficie pannelli solari entro il 50-70% della superficie piscina. Nel nostro caso la condizione più conveniente sarebbe stata di 60 x 50 /100 = min 30 m² max 42 m² come si evince dalla tabella sopra riportata (38,5 m²). ne seguirebbe il risparmio energetico diurno di € /anno1457


Il calcolo è molto più complesso rispetto a quanto sopra evidenziato.

La nostra è una sintesi di calcolo adottando algoritmi alquanto appropriati con un errore valutabile nell'intorno del 15% max .

In un calcolo scientifico dovremmo prendere in considerazione: la località ; l'altitudine; la velocità del vento con tutte le sue variabili temporali; l'umidità nel decorso del tempo; le temperature min e max; la posizione dei pannelli solari termici ; la tipologia dei pannelli solari termici nel contesto generale una mappatura comprensiva di tutte le variabili giorno per giorno per l'effettivo periodo estivo.

Nei calcoli presenti nelle faq ci limitiamo sempre a presentarci con calcoli di verifica; una sintesi di valutazione di quanto sarebbe prodotta scientificamente.

Al riguardo si adotti la tabella di calcolo che avevamo presentato nella Faq.608.2 presente in www.ctenergia.it nel comparto "calcolo utili" che riproduciamo nella presente con il riporto dei Sui dati.

