Prodotti, sistemi e soluzioni evolute. Innovativi da sempre

www.tiemme.com

FAQ 351

info@ctenergia.it

newsletter@tiemme.com

DOMANDA:

Come si calcola la capacità del vaso d'espansione in asservimento a serbatoi per la produzione d'acqua calda sanitaria e la relativa taratura per un'installazione che considera una volumetria di

4.000 I suddivisi su due serbatoi?

RISPOSTA:

Per la scelta del vaso d'espansione si deve considera-

- a- il volume d'acqua contenuto nell'impianto "Q";
- b- la pressione assoluta di precarica "Pp*" (valore fornito dal produttore):
- c- la pressione assoluta massima d'esercizio " Pe*":

Nota: per pressione assoluta deve intendersi la pressione indicata dal manometro +1.

Volume del vaso d'espansione:

Per vasi aperti $V = (Q \times E)$

Per vasi chiusi $V = (Q \times E) / (1 - (Pp^* / Pe^*))$

Tab. 1

volume specified dell'acqua ane varie temperature								446	
°C	V dm3	°C	V dm3	°C	V dm3	°C	V dm3	°C	V dm3
4	1	18	1.00138	28	1,00375	50	1,01210	75	1,0258
10	1,00027	20	1,00177	30	1,00435	55	1,01450	80	1,0290
12	1,00048	2z	1,00221	35	1,00628	60	1,01710	85	1,0324
14	1,00073	24	1,00268	40	1,00782	65	1,01980	90	1,0359
16	1,00103	26	1,00329	45	1,01020	70	1,02270	100	1,0434
	°C 4 10 12 14	°C V dm3 4 1 10 1,00027 12 1,00048 14 1,00073	°C V dm3 °C 4 1 18 10 1,00027 20 12 1,00048 22 14 1,00073 24	°C V dm3 °C V dm3 4 1 18 1,00138 10 1,00027 20 1,00177 12 1,00048 22 1,00221 14 1,00073 24 1,00268	°C V dm3 °C V dm3 °C 4 1 18 1.00138 28 10 1,00027 20 1,00177 30 12 1,00048 22 1,00221 35 14 1,00073 24 1,00268 40	°C V dm3 °C V dm3 °C V dm3 4 1 18 1 00138 28 1,00375 10 1,00027 20 1,00177 30 1,00435 12 1,00048 22 1,00221 35 1,00628 14 1,00073 24 1,00268 40 1,00782	°C V dm3 °C V dm3 °C V dm3 °C 4 1 18 1,00138 28 1,00375 50 10 1,00027 20 1,00177 30 1,00435 55 12 1,00048 22 1,00241 35 1,00628 60 14 1,00073 24 1,00268 40 1,00782 65	°C V dm3 °C V dm3 °C V dm3 °C V dm3 4 1 18 1.00138 28 1.00375 50 1.01210 10 1,00027 20 1,00177 30 1,00435 55 1,01450 12 1,00048 22 1,00221 35 1,00628 60 1,01710 14 1,00073 24 1,00268 40 1,00782 65 1,01980	°C V dm3 °C V dm3 °C V dm3 °C V dm3 °C 4 1 18 1 00138 28 1,00375 50 1,01210 75

volume specifico dell'acqua alle varie temperature

con: E indichiamo il volume d'espansione tra i volumi specifici dell'acqua misurati alla temperatura massima e minima d'esercizio rilevabili dalla Tab. 1.

Per la richiesta in oggetto abbiamo i seguenti dati:

Q = 4000L

T max serbatoio 70° C V = 1,02270 dm³

T min serbatoio 20° C V= 1.00177 dm³

Volume d'espansione $E = 1,02270 - 1,00177 = 0,02093 \text{ dm}^3 = 0,02093 \text{ I}$ (che rappresenta un aumento del volume del 2.1% ad una temperatura di 70°C)

A. Considerando un vaso aperto, avremo:

volume del serbatoio d'espansione V= 4.000 x 0,02093 = 841 (che rappresenta un aumento del volume del 2,1% ad una temperatura di 70°C)

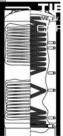
B. Considerando un vaso chiuso, rilevando:

pressione d'esercizio Pe = 2,5 bar al valore di taratura della valvola di sicurezza ; Pe* = 3,5 bar pressione di precarica vaso d'espansione Pp = 1,5 bar; $Pp^* = 2,5$ bar avremo:

volume del serbatoio d'espansione $V = (4000 \times 0.02093) / (1 - (2.5/3.5)) = 2931 (che$ rappresenta un aumento del volume del 7,3% ad una temperatura di 70°C) Si utilizzeranno quindi 2 vasi da 150L ciascuno.

La pressione di precarica assoluta è indicata dal produttore sulla targa dell'apparecchiatura. Come valore della pressione d'esercizio si deve far riferimento alla pressione di taratura della valvola di sicurezza, maggiorata di un'altezza pari al dislivello fra la valvola di sicurezza e il vaso di espansione.

Serbatoio produzione acqua calda sanitaria con 1 serpentino Art. 4703BOILER


Serbatoio produzione acqua calda sanitaria con doppio serpentino Art. 4700BOILER

Serbatoio produzione acqua calda sanitaria con triplo serpentino (doppio scambiatore solare + scambiatore per ACS)

Art. 4701BOILER

Per completamento della gamma prodotti consultare catalogo tecnico TIEMME